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Abstract Genomic-scale experimentation aims to view biological processes as
a whole, yet with molecular precision. Using massively parallel DNA microarray
technology, the mRNA expression of tens of thousands of genes can be measured
simultaneously. Mathematical distillation of this flood of gene expression data reveals
a deep molecular and biological logic underlying gene expression programs during
cellular differentiation and activation. Genes that encode components of the same
multi-subunit protein complex are often coordinately regulated. Coordinate regulation
is also observed among genes whose products function in a common differentiation
program or in the same physiological response pathway. Recent application of gene
expression profiling to the immune system has shown that lymphocyte differentiation
and activation are accompanied by changes of hundreds of genes in parallel. The
databases of gene expression emerging from these studies of normal immune
responses will be used to interpret the pathological changes in gene expression that
accompany autoimmunity, immune deficiencies, and cancers of immune cells.

INTRODUCTION

The established, model-driven field of immunology is about to collide with the
upstart, discovery-driven field of genomics. Traditional research in molecular
biology and molecular immunology can be likened to trying to understand a
movie by successively examining a few pixels (genes) at a time from each frame.
Genomic approaches allow the scientist to view the entire movie in one sitting
and discover complex interrelationships among the plot, characters, and recurring
themes. The tension between genomic approaches and the more traditional single
gene orientation of molecular biology often leads to criticism of genomic
approaches as non-hypothesis-driven. Those who favor a genomic approach
embrace this characterization, noting that genomic approaches are deliberately
not hypothesis-limited and are instead discovery-driven. When the powerful
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molecular tools of genomics are applied to a new biological question, discoveries
will almost certainly be made that will generate new hypotheses and necessitate
a reworking of existing models.

The field of immunology is especially primed to receive the new insights that
genomics can provide. Numerous immune cell types have been defined with high
precision, and methods to culture and manipulate these cells are well developed.
Such experimental systems are ideal settings in which to study genome-wide
phenomena under very well controlled circumstances. Powerful techniques for
the analysis of single gene mutations in lymphocytes have been developed in the
mouse, yielding a plethora of precise genetic models that are ideal substrates for
genomic approaches. Finally, malfunctions of the immune system give rise to a
host of autoimmune diseases, immune deficiency diseases, and malignancies in
need of fresh insights that may be supplied by genomic views of the pathological
processes.

The young field of genomics has already been somewhat arbitrarily subdivided
into two separate disciplines. One branch of genomics, structural genomics, has
as its immediate goal to determine complete genomic DNA sequences of the
major model organisms. To date, the complete genomes of the yeast Saccharo-
myces cerevisiae (1), the worm Caenorhabditis elegans (2), and numerous pro-
karyotes have been sequenced (3). The complete genomes of these simple
organisms have yielded a plethora of orthologues of human and mouse genes.
New insights into the function of these evolutionarily conserved gene families
are thus made possible using the more tractable genetics of these model
organisms.

Much of this review focuses, however, on the newly coined field of functional
genomics. Broadly construed, functional genomics encompasses any experimen-
tal approach that uses genomic structural information to view and understand
biological processes in a systematic and comprehensive fashion. This vast frontier,
opened up by the genome sequencing projects, is just beginning to be explored.
Even at this early stage, a diversity of approaches have been developed for explor-
ing the living genome. In this review, however, we focus primarily on one of
them: the genome-wide analysis of mRNA expression using DNA microarrays.
Because of the central role played by regulation of mRNA levels in development
and physiology and because of the deep, logical connection between the function
of a gene’s product and its pattern of expression, this specific area of functional
genomics research has been the richest source of new biological insights. One of
the defining characteristics of functional genomic approaches is that they generate
data streams that overwhelm the traditional analytical methods of biology and
indeed make possible entirely new ways of looking at living systems. Throughout
this review, we discuss how the field of bioinformatics has faced the challenge
of organizing, distilling, and visualizing the information provided by genomic
data in ways that allow biological insights to be found.

The field of genomics naturally intersects with classical genetics in the study
of complex genetic diseases. In polygenic disorders, the contribution of any one
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locus to the disease phenotype is small and may be apparent only in the context
of specific alleles in other genes. The current race to define allelic variants of
genes in human populations is largely fueled by the desire to understand their
contribution to differential disease susceptibility. Millions of single nucleotide
polymorphisms exist in the human population, and recognizing the linkage or
association of a single polymorphism with a disease state is a considerable chal-
lenge (4). Techniques in functional genomics provide information that can com-
plement linkage and association methods in making the connection between genes
and disease risks. For virtually every gene, variation in its expression, as a func-
tion of cell specialization, physiology, or disease, is much richer than allelic vari-
ation in that gene. Because the pattern in which each gene is expressed is so
closely connected to the biological role and effects of its product, systematic
studies of variation in gene expression can provide an alternative approach to
linking specific genes with specific diseases and to recognizing heritable variation
in genes important for immune function. For example, allelic differences in the
regulatory regions of cytokine genes may influence the expression levels of cyto-
kines during particular immune responses. An appreciation for such quantitative
traits in the immune system may help unravel the genetics of autoimmune diseases
and lymphoproliferative disorders.

STRUCTURAL GENOMICS AND THE IMMUNE SYSTEM

Systematic studies of genomic expression programs are best pursued in two inde-
pendent steps. The first step is to obtain as complete a catalog as possible of all
the expressed genes in the genome. The second step is to use parallel methods,
such as DNA microarray hybridization, to measure the expression of each gene
in the genome over the range of conditions and cell types under investigation.
Our still incomplete knowledge of the human and mouse genomic sequence and
the incomplete catalog of genes in these genomes present an important challenge
in functional exploration of mammalian genomes. Even when a full mammalian
genomic sequence is known, it will not immediately be possible to identify all of
the segments that are expressed as mRNA. Computer algorithms such as GRAIL
(5) use machine learning techniques to identify putative coding regions in
genomic sequences. In practice, however, these algorithms need to be supple-
mented by cDNA sequence data to completely annotate the exon-intron structure
of a mammalian genome. Indeed, even in microbial genomes with few or no
introns and much higher densities of transcribed and protein-coding sequences
than are found in mammalian genomes, current algorithms for identifying genes
in genomic sequences have significant false positive and false negative rates.
Therefore, an indispensable component of any mammalian genome project is
high-throughput, single-pass sequencing of cDNA libraries to generate expressed
sequence tags (ESTs) (6), which provides a systematic set of unique labels for
identifying the mRNAs that can be expressed from a genome. The current release
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of the EST database dbEST [release 070999 (7)] contains 1,476,380 human ESTs
and 658,511 mouse ESTs. These numbers are much larger than the numbers of
distinct transcripts represented in each set because a very large fraction of the
ESTs in each set is composed of multiple representations of mRNAs that are
widely or highly expressed in the cells from which the source libraries were
obtained. Indeed, despite these large numbers, it is clear that that not all of the
human genes are represented by an EST in this public database. To illustrate this
deficiency, consider the representation of interleukin sequences in the dbEST.
ESTs representing about half of the known human interleukins can be found in
this database, but no ESTs representing interleukins 2, 3, 5, 9, 11, 12 beta, 14,
and 17 have yet been encountered. By contrast, of the 8963 known human genes
with full-length cDNA sequences, 89% are represented by an EST in the dbEST
database. This discrepancy reflects the bias in the dbEST database toward genes
that are widely or highly expressed and the fact that very few of the EST
sequences in the public domain have come from cDNA libraries made from acti-
vated cells of the immune system. Given this example from the immune system,
one wonders how many inducible genes in other specialized or rare cell types
have yet to be identified.

For the present, filling the gaps in our catalog of human expressed genes is a
practical problem for which simple, though technically challenging, incremental
solutions can often be found. Several years ago, the public EST database was
strikingly deficient in sequences from B lymphocytes. This void was a serious
impediment not only to the study of normal B cell development and physiology
but also to the study of human lymphoid malignancies, the majority of which are
derived from B cells. In order to fill this void, several libraries were created from
normal and malignant human B cells and sequenced under the auspices of the
Cancer Genome Anatomy Project (8, 9). As shown in Table 1, each of these
cDNA libraries yielded a large number of novel ESTs, ranging from 12% to 22%
of the total ESTs sequenced, most presumably representing genes never previ-
ously identified or studied. In part, this apparent high rate of gene discovery can
be attributed to the paucity of previous EST sequences from B cell libraries and
to the normalization process used in creating the NCI_CGAP_GCB1 library (10).
Among the non-unique ESTs, some represented genes that were observed only
in B cell libraries or only in other lymphoid libraries (Table 1). This example
illustrates the challenge that will be faced in trying to discover the complete set
of expressed human genes, including all the genes expressed at low levels or in
highly specialized cells or conditions.

The Unigene project at the National Center for Biotechnology Information has
attempted to provide a systematic classification of EST sequences (11). Unigene
uses sequence alignment methods to group overlapping cDNA sequences into
clusters, each of which provisionally corresponds to a unique gene. The Unigene
analysis of the B cell library ESTs also reveals a high rate of gene discovery:
1652 of the 83,240 Unigene clusters at the time of this writing are defined only
by ESTs derived from B cells. Viewed in another way, approximately 10% of the



TABLE 1 High-throughout sequencing of human B cell cDNA libraries

BLAST Analysis Unigene Analysis

CDNA Library Name mRNA Source
3* ESTs

Total

3* ESTs
Unique to
Library

3* ESTs
Only in
B Cell

Libraries

3* ESTs
Only in

Lymphoid
Libraries

Unigene
Clusters

Containing
Library Clone

Unigene Clusters
Uniquely

Defined by
Library Clone

NCI_CGAP_GCB1 Tonsillar germinal center/memory B cells 40428 7388 233 443 13078 1058

NCI_CGAP_GCB0 Tonsillar germinal center/memory B cells 907 139 1 4 495 4

NCI_CGAP_Lym12 Follicular mixed small and large cell 4038 480 21 18 2381 200

NCI_CGAP_Lym5 Follicular lymphoma 1293 182 17 10 859 40

NCI_CGAP_Lym6 Mantle cell lymphoma 621 135 3 3 316 16

NCI_CGAP_CLL1 Chronic lymphocytic leukemia 8628 1085 127 54 4612 277

All B cell libraries 55915 9409 402 532 15992 1652

833
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genes (Unigene clusters) that were sampled during the sequencing of B cell librar-
ies were B cell–restricted. This result dramatically demonstrates our relative igno-
rance of the molecular biology of B lymphocytes and the need for systematic,
genomic approaches to determine the expression patterns and functions of these
novel genes in immune responses and other physiological processes.

GENOMIC-SCALE ANALYSIS OF GENE EXPRESSION

Although posttranscriptional mechanisms are important in regulating the expres-
sion of many genes, most cellular regulation is achieved by changes in mRNA
levels. Consequently, systematic studies of gene expression patterns have proven
to be remarkably powerful sources of insight into gene function and biological
processes. Four aspects of genome-wide gene expression analysis are particularly
appealing. First is its feasibility: DNA microarrays make it easy to measure, in a
single hybridization, the mRNA abundance of every gene for which either a clone
or sufficient DNA sequence information exists. Second, there is a biologically
rational connection between the function of a gene product and its expression
pattern. Natural selection has acted to optimize simultaneously the functional
properties of the product encoded by a gene and the program that dictates where,
when, and in what amounts the product is made. As a rule, each gene is expressed
in the specific cells and under the specific conditions in which its product makes
a contribution to fitness. The richness and precision with which mRNA levels
can be controlled is such that virtually every gene in the yeast genome can be
distinguished from every other gene based on its pattern of expression. Therefore,
even subtle variations in the expression patterns of genes can be related to cor-
responding differences in the functions of the products they encode. Third, pro-
moters and the regulatory systems that act upon them function as transducers,
integrating diverse kinds of information about the identity, environment, and
internal state of a cell. Thus, a diversity of information that is difficult or impos-
sible to measure is transformed into a signal that can readily be measured system-
atically using DNA microarrays. Learning to decode this transduced information
is one of the immediate priorities of functional genomics. Finally, the set of genes
expressed in a cell determines how the cell is built, what biochemical and regu-
latory systems are operative, and what it can and cannot do. Thus, as we learn to
infer the biological consequences of gene expression patterns, using our growing
knowledge of the functions of individual genes, we can use microarrays as micro-
scopes to see a comprehensive, dynamic molecular picture of the living cell.

Several methods have been developed over the last several years to quantitate
the mRNA expression of thousands of genes in parallel. One method, termed
serial analysis of gene expression (SAGE), relies on high-throughput sequencing
of 14-bp, gene-specific cDNA tags to enumerate the expression of individual
genes in a cell (12). Because of its reliance on DNA sequencing, SAGE can
identify novel transcripts that have not been observed in other high-throughput
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sequencing projects. On the other hand, it is difficult to analyze large numbers of
samples, or to measure changes in the abundance of rare transcripts, using SAGE,
and thus this method is most suited to binary questions in which the transcriptional
response to a particular cellular stimulus or to a single transcription factor is
assessed. Within the immune system, SAGE has recently been used to analyze
gene expression in mast cells before and after stimulation through the high-affinity
IgE receptor (13). An interesting and unanticipated finding was the expression in
resting mast cells of macrophage inhibition factor (MIF), a cytokine that was
previously known to be constituitively expressed only in macrophages and ante-
rior pituitary cells. MIF is an important mediator of delayed-type hypersensitivity
(DTH) reactions, and this observation suggests an important role for mast cells
in some forms of DTH. Despite extensive prior study of cytokine production by
mast cells, the expression of MIF had not been reported, pointing to the value of
unbiased, genome-wide gene expression surveys.

In the other common methods of genomic expression analysis, DNA fragments
derived from individual genes are placed in an ordered array on a solid support.
These arrays are then hybridized with radioactive or fluorescent cDNA probes
prepared from total cellular mRNA by reverse transcription. Following washing,
the hybridization of the cDNA probes to each array element is quantitated using
either a phosphorimager for radioactive probes or a scanning confocal microscope
for fluorescent probes. Three styles of arrays are used most commonly. Nitrocel-
lulose filter arrays are prepared by robotic spotting of purified DNA fragments
or lysates of bacteria containing cDNA clones, and the filter arrays are hybridized
with radioactive cDNA probes (14–17). Oligonucleotide arrays can be produced
by in situ oligonucleotide synthesis in conjunction with photolithographic mask-
ing techniques and are hybridized with fluorescent cDNA probes (18–22).These
two array formats are typically hybridized with a single cDNA probe at a time.
In order to compare the mRNA expression profiles of two samples, therefore, two
probes are generated and hybridized to separate arrays. The relative hybridization
of the two probes to each array element is determined indirectly by mathematical
normalization of the two data sets. A third type of microarray is fabricated by
robotic spotting of PCR fragments from cDNA clones onto glass microscope
slides (23–29). These cDNA microarrays are simultaneously hybridized with two
fluorescent cDNA probes, each labeled with a different fluorescent dye (typically
Cy3 or Cy5). In this format, therefore, the relative mRNA expression in two
samples is directly compared for each gene on the microarray (Figure 1A, see
color insert). For a given gene, the fluorescence ratio corresponds well with more
conventional measures of relative gene expression including Northern blot
hybridization and quantitative RT-PCR (23, 29, 30). Scanning and interpreting
large bodies of relative gene expression data is a formidable task, which is greatly
facilitated by algorithms designed to organize the results in ways that highlight
systematic features and by visualization tools that represent the differential
expression of each gene as varying intensities and hues of color (Figure 1B, see
color insert) (31).
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Mathematical Analysis of Gene Expression Data

The ability to produce large systematic sets of measurements of gene expression
on a genomic scale using DNA microarrays is becoming commonplace. A single
group, in a year, can print several thousand microarrays with a single microar-
raying robot and can produce tens of millions of individual measurements of gene
expression. The mathematical analysis of the resulting data is a rapidly evolving
science that is nevertheless based on a rich mathematics of pattern recognition
developed in other contexts (32). Typical goals of these analyses are to identify
groups of genes that are coregulated within a biological system, to recognize and
interpret similarities between biological samples on the basis of similarities in
gene expression patterns, and to recognize features of gene expression patterns
that can be related to distinct biological processes or phenotypes. In other words,
the biologist wishes to identify systematic features in the data that can be under-
stood as a molecular picture of a biological system.

The expression pattern for each gene on an array across n experimental samples
can be represented by a point in n-dimensional space, with each coordinate spec-
ified by an expression measurement in one of the n samples. In order to determine
the proximity of points in this gene expression space (a measure of the similarity
in the expression patterns of the corresponding genes), one must first define a
metric that quantitates the distance between any two of these points. In the clus-
tering algorithms that have been implemented thus far, the most commonly used
metric is essentially the standard correlation coefficient of the two data vectors
(31). Although there are other possible ways of measuring distance in gene
expression space, this metric is well suited to gene expression data because it
corresponds well to the intuitive idea of coordinate regulation of two genes (31).

The second step in the mathematical treatment of array data is to apply one of
many clustering algorithms that use the distance metrics to find clusters of genes
in this n-dimensional space, corresponding to genes with similar patterns of vari-
ation in expression over a series of experiments. The clustering methods that have
been applied to array data thus far are hierarchical clustering (31), self-organizing
maps (SOMs) (33), k-means (34), and deterministic annealing (35). Each of these
algorithms easily captures the main biological features within data sets. For exam-
ple, hierarchical clustering, SOMs, and k-means algorithms have all been applied
to cell cycle data in yeast and have each revealed several broad classes of cell
cycle–regulated genes (33, 34, 36). Nonetheless, the differences in the various
algorithms produce views of the data that differ in detail with respect to the
assignment of genes or samples to particular clusters. There is no ideal approach
to the problem that these clustering methods address, namely the projection of a
very high dimensional body of data to a lower-dimensional space (often just a
one-dimensional ordered list). A reasonable approach, therefore, is to use a variety
of different algorithms, each emphasizing distinct orderly features of the data, in
order to glean the maximal biological insight.
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Figure 2 (see color insert) presents a simple example of hierarchical clustering
applied to data from T cell and fibroblast activation experiments (30, 37). Hier-
archical clustering begins by determining the gene expression correlation coef-
ficients for each pair of the n genes studied. The two genes with the most
correlated expression across all of the samples are fused into a node that is sub-
sequently represented by the average expression of the two genes. This clustering
process is then repeated on the n11 genes/nodes that remain. After n11 itera-
tions, all genes are incorporated into a dendrogram that connects each of the nodes
generated during the clustering (Figure 2, see color insert). The length of each
fork in the dendrogram is inversely proportional to the similarity of the two nodes
or genes that it connects. The data in Figure 2 are taken from one experiment
with human peripheral blood T cells activated by phytohemagglutinin (PHA) and
phorbol-myristoyl-acetate (PMA) and another experiment with human serum-
starved fibroblasts activated by readdition of serum. In both experiments, the cells
were initially in the G0 stage of the cell cycle and synchronously entered G1 and
S phase following stimulation. Each experiment used microarrays containing the
same set of 9000 human cDNAs to monitor changes in gene expression over time,
comparing mRNA from each stimulated culture with mRNA from resting cells.
Figure 2 (see color insert) shows data from a subset of the induced and repressed
genes, presented at the left in an unclustered form and, at the right, arranged by
hierarchical clustering to reveal coordinately expressed genes.

In this example, the clustering algorithm identified three broad clusters that
contain genes activated (a) in T cells only, (b) in both T cells and fibroblasts, or
(c) in fibroblasts only. The genes upregulated in both T cells and fibroblasts
include c-myc, a gene known to be important for progression from G0 to S phase,
and genes involved in energy metabolism, presumably reflecting the increased
energy requirements of activated cells. Within the T cell–specific cluster are the
chemokines MIP-1-alpha and MIP-1-beta, which are known to be coordinately
regulated during T cell activation and are important for recruitment of monocytes
to regions of immune activation. Interestingly, the aryl-hydrocarbon receptor, the
molecular target of dioxin, is specifically induced during T cell activation, perhaps
accounting for the ability of dioxin to induce apoptosis in activated, but not
resting, mouse T cells (38). The SH2- and SH3-containing protein SLAP (src-
like adapter protein) was preferentially induced in T cells. This is noteworthy
because SLAP has recently been shown to inhibit cell cycle progression in fibro-
blasts (39). These microarray data may thus have revealed an unsuspected dif-
ferential function of SLAP in T cell and fibroblast mitogenesis. Notable among
the genes induced preferentially in fibroblasts are basic fibroblast growth factor
(basic FGF) and vascular endothelial growth factor (VEGF), both of which are
involved in a wound healing response (see below) (30). In addition to these three
broad gene expression clusters, there is biologically important fine structure. For
example, c-fos, jun B, and MAP kinase phosphatase were all downregulated in
late T cell activation, whereas they were induced during the serum response of
fibroblasts. The above example highlights several general principles that can
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emerge from clustering of gene expression data. As described in the following
section, studies of global gene expression patterns in yeast have shown that genes
with related biological roles are often tightly coregulated (28, 31, 36, 40, 41). A
corollary is that novel genes of unknown function that are clustered with a large
group of functionally related genes are likely to participate in the same biological
process. In this light, it is interesting to note that several novel genes were selec-
tively induced in T cells rather than fibroblasts (Figure 2, see color insert). Cluster
analysis provides a systematic way to focus attention on subsets of the novel
genes represented in a survey of gene expression patterns that warrant further
investigation in relation to specific biological processes. Finally, Figure 2 dem-
onstrates the usefulness of systematic databases of gene expression measurements
that allow fresh biological insights to be made by juxtaposing and comparing data
sets from disparate biological systems.

Genomic-Scale Gene Expression Analysis in Model Systems

Whole Genome Gene Expression Analysis in Yeast The most extensive and
systematic studies of global gene expression patterns to date have been carried
out in Saccharomyces cerevisiae. The yeast genome was the first genome of a
free-living organism to be completely sequenced, and it has thus been the first
model used for development of many functional genomic approaches that can
now be applied to mammalian genomes. Over the past three years, several groups
have reported studies of genome-wide patterns of gene expression in response to
physiological stimuli, drugs, developmental programs or specific mutations in
yeast (28, 36, 40, 42–45).

Each such study has provided a wealth of new information and insight into a
specific process: the switch from glycolysis to respiration, progression through
the cell division cycle, the program of gametogenesis and spore formation, and
the targets of specific and global transcriptional regulators. Trivially, these studies
provide comprehensive catalogs of the genes whose expression varies in each
specific process or in response to each specific perturbation, and the studies define
the temporal pattern of each gene’s response. But the systematic nature of these
observations, involving comprehensive, quantitative measurements of variation
in each transcript from the yeast genome, makes it possible to view the entire set
of data as one large and expanding survey of the expression program of the yeast
genome. A new and remarkably useful kind of gene expression map emerges
from this approach. In contrast to conventional genetic maps based on the physical
order of genes in the genome, gene expression maps derive their order from the
logic underlying the expression program of a genome.

Gene expression maps are constructed by first organizing the gene expression
data using any of the various clustering algorithms outlined above. The ordered
tables of data are then displayed graphically in a way that allows biologists to
assimilate the choreography of gene expression on a broad scale as well as the
fine distinctions in expression of individual genes. The large panel on the left of
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Figure 3 (see color insert) shows one example of such a map: Each row represents
the expression pattern of one of the 6220 known or predicted genes of yeast, and
each column represents the results of one of 204 genome-wide microarray gene
expression experiments. The expression measurements in this figure were derived
from yeast that were placed under 28 distinct physiological or nutritional condi-
tions and assayed multiply over time. For this map, the hierarchical clustering
strategy was used to group genes on the basis of similarity in gene expression
patterns (31). It is worth noting that this set of over one million measurements of
gene expression represents considerably less than 10% of the genome-wide
expression data that has been collected over the past two years for this one
organism.

A simple evolutionary logic emerges from an analysis of yeast gene expression
maps: Genes with similar expression patterns under a particular set of conditions
encode protein products that play related roles in the physiological adaptation to
those conditions. The extent and precision with which this simple organizing
principle determines the geography represented in this map of the genome is
unexpected and remarkable (31, 41). Genes encoding products that invariably
function together in a stoichiometric complex are virtually always among the most
highly coregulated groups in the genome. For example, the vertical bar at the
upper right of this map (Figure 3) marks the position of a cluster comprising
about 2% of the genes in the yeast genome, including, almost exclusively, all the
genes that encode ribosomal proteins. Similar coregulated clusters identify the
histones, the subunits of the proteosome, and subunits of numerous other multi-
meric enzymes (31, 41). Genes whose products work together in a metabolic
pathway or a discrete physiological or developmental program are typically less
tightly coregulated than components of stoichiometric complexes, but they are
sufficiently similar in their expression patterns to cluster together in this genomic
expression map. Expanded views of two such clusters are shown at the right of
Figure 3 (see color insert): One cluster is composed of genes encoding compo-
nents of the mitochondrial electron transport and ATP synthase complexes
(labeled ‘‘respiration’’), and the other is composed of genes that play key roles
in chromosome synapsis and meiotic recombination (labeled ‘‘meiosis’’). Each
cluster includes genes without a presently identified function. The consistent rela-
tionship between a gene’s expression pattern and its function, reflected in this
map, provides the basis for imputing functions to these previously uncharacterized
genes. Indeed, the essential role in sporulation for one of the previously unchar-
acterized genes in the sporulation cluster, YPR007C, which is predicted to encode
a putative chromosome cohesion protein, was established following its identifi-
cation by this cluster analysis method (40). Conversely, each of the conditions
represented in this gene expression map (the vertical columns) is characterized
by a unique and recognizable signature in its gene expression pattern. Each cell
transduces variation in its environment, internal state, and developmental state
into readily measured and recognizable variation in gene expression patterns.
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Thus the global pattern of gene expression provides a distinctive and accessible
molecular picture of the state and identity of biological samples.

The prospects for mapping the regulatory networks that control gene expres-
sion programs and connecting them to the corresponding environmental stimuli
and the physiological processes that they mediate are already apparent from stud-
ies in yeast. These studies have revealed unsuspected complexity in the relation-
ships among regulatory proteins and the genes they control and, at the same time,
have provided compelling evidence for the experimental tractability of this prob-
lem to systematic dissection (28, 36, 40, 43, 45).

Unconventional Pictures of Biological Responses from Genome-Scale Gene
Expression Profiles One of the most useful qualities of the systematic charac-
terization of gene expression programs is that the results are much less constrained
by preconceived models than traditional, ‘‘hypothesis-limited,’’ experimental
approaches. A vivid example of this feature was provided by a genome-scale
survey of gene expression changes during the response of serum-deprived cul-
tured human fibroblasts to serum (30). A cDNA microarray representing approx-
imately 9000 different human genes was used to measure gene expression changes
at 14 time points following the readdition of serum, beginning 15 min after stimu-
lation and continuing for 24 h. The experiment was intended to provide new
insights into the transition from the G0 cell cycle state to a proliferating state
since, historically, the serum response of fibroblasts had been viewed as a simple
model for this transition. However, the proliferation-related changes in gene
expression accounted for only a small fraction of the program of gene expression
that was observed in this experiment.

The gene expression program of serum-stimulated fibroblasts was far richer
than anticipated and pointed to an important physiological role of fibroblasts in
the wound healing response. Serum, the soluble fraction of clotted blood, is nor-
mally encountered by cells in vivo in the context of a wound. Indeed, the expres-
sion program that was observed in response to serum suggested that fibroblasts
are programmed to interpret the abrupt exposure to serum not as a general mito-
genic stimulus but as a specific physiological signal signifying a wound. Numer-
ous genes with known roles in processes relevant to wound healing were induced
by the serum stimulus. These included genes involved in the direct role of fibro-
blasts in remodeling the clot and the extracellular matrix as well as genes encoding
intercellular signaling proteins that promote inflammation, angiogenesis, and re-
epithelialization.

Although this study focused exclusively on the fibroblast and was not intended
or expected to address any aspect of immunity, the observed expression program
pointed to an important role for fibroblasts in orchestrating the immune response
to a wound. The serum-induced genes encoded proteins that promote chemotaxis
and activation of neutrophils, monocytes and macrophages, T lymphocytes and
B lymphocytes, thus providing innate and antigen-specific defenses against
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wound infection. In addition, the recruitment of phagocytic cells is required to
clear out the debris during wound remodeling.

The results, unexpectedly, remind us of the importance of viewing an immune
response as a concerted physiological program, involving not only cells normally
regarded as components of the immune system per se but also virtually any cell
that finds itself in a setting where an immune response is called for. The picture
painted by the transcriptional response to serum suggests that the fibroblast is an
active participant in a conversation among the diverse cells that work together in
wound repair, interpreting, amplifying, modifying, and broadcasting signals that
control inflammation, angiogenesis, and epithelial regrowth during the response
to an injury. Another implication of this experiment is that fibroblasts, and very
likely many other cells, are programmed to recognize exposure to serum as a
signal representing a serious injury. Inclusion of serum in mammalian cell culture
medium has become a common, almost ubiquitous, practice. Yet, this experiment
suggests that trying to study the normal behavior of cells in the presence of serum
may be analogous to trying to study normal human behavior in a burning building.

Signal Transduction One of the natural arenas for genomic-scale gene expres-
sion analysis in mammalian systems is signal transduction. It is clear from studies
of protein-protein interactions and inducible phosphorylation events that proximal
signaling pathways are considerably interwoven. However, not yet known is the
extent to which the downstream transcriptional targets of different signaling path-
ways are overlapping or distinct. For one class of target genes, the immediate
early genes, the answer appears to be that disparate signaling pathways converge
on virtually identical immediate early target genes (46). Oligonucleotide microar-
rays were used to compare the immediate early gene response (i.e. genes induced
within 4 h of stimulation) of fibroblasts to platelet-derived growth factor (PDGF),
fibroblast growth factor (FGF), and epidermal growth factor (EGF), all of which
signal through distinct tyrosine kinase receptors. Out of 5938 genes on the array,
66 genes displayed an immediate early response to PDGF. Almost all of these
genes were also induced by FGF to the same degree as by PDGF. Correspond-
ingly, these two growth factors cause a quantitatively similar mitogenic response
in fibroblasts. Although EGF induced many, but not all, of the same immediate
early genes, the magnitude of the induction was quantitatively lower than
observed with PDGF and FGF. In this experimental system, therefore, the imme-
diate early genes behave as a transcriptional ‘‘module’’ that is invoked to a greater
or lesser degree by different cellular stimuli. A second important conclusion from
this study was that none of the tyrosines in the cytoplasmic tail of the PDGF
receptor was absolutely required for any discrete feature of the immediate early
response. This was a surprise because previous work had shown that each tyrosine
serves as the docking site for a different signal transduction protein. The results
therefore suggest that signal transduction networks must be extensively ramified
proximal to the membrane tyrosine kinase receptors, converging on a common
set of nuclear immediate early responses.
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This is, of course, only one snapshot of the genomic response to membrane
signaling events. Since the serum response of fibroblasts induced a stereotypical
set of genes beyond the immediate early time frame, it is quite plausible that
different receptor kinases will cause distinct delayed transcriptional responses
(30). The signaling events through other cell surface receptors certainly will lead
to receptor-specific transcriptional responses in some cases. Microarray analysis
of cytokine responses, for example, reveals both cytokine-specific and generic
transcriptional responses (37). This is not surprising given the direct docking of
distinct STAT family transcription factors to the various cytokine receptors (47).
Thus, when membrane signaling events lead more directly to the activation and/
or nuclear translocation of transcription factors without invoking extensively
interconnected proximal signaling networks, signature transcriptional responses
may be elicited. Finally, the cell type chosen for signaling experiments will inevi-
tably influence the genomic transcriptional response. For example, a microarray
analysis of PMA-responsive genes in myeloid and lymphoid cell lines revealed
sets of induced genes that were cell line–specific as well as genes that were PMA-
responsive in all myeloid cell lines but not in Jurkat T cells (33). The develop-
mental history of a cell, preserved within heritable chromatin structure or by DNA
methylation, will shape the outcome of signaling, as will the different repertoires
of transcription factors that are available to various cell types.

The direct target genes of transcription factors can be revealed by genomic-
scale gene expression analysis, as illustrated by studies of p53 and BRCA1 (48–
51). Inducible overexpression of transcription factors is the experimental design
that is currently adopted in most cases. Although valuable, this approach is some-
what risky in that artificial overexpression can lead to nonphysiological titration
of protein-protein interactions and binding of transcription factors to inappropriate
sites within the genome. Genomic studies of loss-of-function mutants will be an
important goal in this field. Analysis of cells taken from knockout animals will
be helpful, particularly in cases in which the developmental program has not been
overtly altered by the engineered mutation. Large-scale loss-of-function studies
in somatic cells in culture await the development of robust methods of gene
disruption or interference.

Genomic-Scale Gene Expression Analysis in the Immune
System

Ultimately, studies of gene expression in the immune system will examine the
entire genomic repertoire of genes in each sample investigated. Although this
complete repertoire is not yet available, many insights into the gene expression
programs evoked during immune responses can be made using large DNA
microarrays that deliberately include many genes known to be expressed in
immune cells. An example of such a specialized subgenomic microarray is the
Lymphochip, a specialized human cDNA microarray that is enriched for genes
related to immune function (8). The Lymphochip microarray is composed of
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17,853 cDNA clones derived from three sources. The majority of clones (;80%)
were derived from the lymphoid cDNA libraries that were subjected to high-
throughput EST sequencing (Table 1). The selection of these clones was based
on bioinformatics algorithms that identified ESTs that were either unique or
enriched in lymphoid cDNA libraries (8). A second set of Lymphochip clones
was identified during the course of previous microarray analyses of immune
responses using first-generation microarrays of ;10,000 human genes (37). Last,
a curated collection of 3183 ‘‘named’’ genes that are of known or suspected
importance to immune function, cell proliferation, apoptosis, or oncogenesis and
57 open reading frames from the pathogenic human viruses HIV-1, HTLV-I, EBV,
and HHV-6, 7, and 8 were incorporated into the Lymphochip. One of the virtues
of mechanically printed microarrays like the Lymphochip, in this era of contin-
uing gene discovery, is that they can be readily upgraded: New genes that are
discovered during further high-throughput sequencing or as a result of directed
molecular biology experiments can be added to new editions of the Lymphochip
in days.

The Genomic Expression Program in Lymphocyte Differentiation Systematic
exploration of gene expression programs during human lymphocyte development
and activation is under way. Early work has focused on late-stage B cell differ-
entiation, following mature, naive B cells from the resting state through the ger-
minal center reaction and into terminal differentiation. The germinal center is an
inducible microenvironment formed during an immune response by the concerted
action of antigen-specific B and T cells together with follicular dendritic antigen-
presenting cells (FDCs) (52, 53). The germinal center reaction is initiated when
the surface immunoglobulin receptor on a B cell encounters its cognate antigen,
and activated T cells signal the B cell through CD40. FDCs secrete a gradient of
the chemokine BLC, which signals the activated B cell through the BLR1/CXCR5
receptor to migrate toward the FDC (54). Activated T cells also migrate to the
nascent germinal center where they continue to interact with germinal center B
cells. The germinal center becomes polarized, with highly proliferative centroblast
B cells in the ‘‘dark’’ zone and less proliferative centrocytes in the ‘‘light’’ zone.
The process of somatic hypermutation of immunoglobulin genes is initiated in
centroblasts, which then migrate to the light zone to become centrocytes. If the
hypermutation process has improved, or at least preserved, the ability of the B
cell to bind antigen on the surface of the FDC, the B cell is rescued from pro-
grammed cell death. The B cell may then migrate back to the dark zone and
continue somatic hypermutation or may terminally differentiate into a memory B
cell or plasma cell.

B cells at each of these stages of differentiation were purified from human
tonsils or peripheral blood, and their transcript patterns were characterized using
the Lymphochip microarray (8). As important controls, B cells were activated
polyclonally in vitro by ligation of the antigen receptor and activation with CD40
ligand, with and without IL-4. Additionally, T cells were mitogenically activated
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with phorbol ester and ionomycin. The gene expression profiles shown in Figure
4 (see color insert) reveal that germinal center B cells represent a distinct stage
of B cell differentiation that activates a broad gene expression program that is
not observed in mitogenically activated peripheral blood B cells. Germinal center
B cells not only express scores of genes that are missing in activated peripheral
blood B cells but also lack expression of many genes that are induced during in
vitro B cell activation. Thus, coligation of undefined B cell surface receptors,
together with stimulation through the antigen receptor and CD40, may be needed
to generate the germinal center gene expression profile. Indeed, no convincing in
vitro culture system has yet been developed that is able to induce resting periph-
eral B cells to adopt a full germinal center phenotype. The large set of germinal
center B cell–specific genes discovered by microarray analysis can therefore serve
as a yardstick to measure the success of in vitro cultures in mimicking the ger-
minal center state.

Mitogenically activated B and T cells shared a common set of activation genes
(Figure 4, see color insert), which may reflect the convergence of multiple sig-
naling pathways on common nuclear targets (46) and the fact that the cell cycle
gene expression program was activated in both cell types. However, mitogenically
activated T cells expressed a distinct set of genes not observed in resting T cells
or in activated B cells (not shown). This set of genes includes, of course, various
cytokines such as IL-2 and TNF alpha but also a number of novel genes. Based
on the coordinate expression of these novel genes with cytokines and the lineage
specificity of their expression, they are attractive candidates for functional anal-
ysis in the future.

The Relationship of Lymphoid Malignancies to Normal Lymphocyte
Differentiation Genomic-scale gene expression profiling is certain to illuminate
many aspects of cancer pathogenesis, cancer diagnosis, and the mechanisms
underlying treatment resistance and susceptibility. Traditionally, studies of muta-
tions, amplifications, and deletions in the genomic DNA of cancer cells have
revealed many of the key genetic events that occur during the progression to
cancer. Many of these genetic alterations may have acted for many years prior to
diagnosis to bypass key checkpoints and allow cell cycle progression. On the
other hand, gene expression profiling of cancer cells reflects the molecular phe-
notype of the cancer cell at diagnosis. As a consequence, the detailed picture
provided by the genomic expression pattern may provide the basis for a new
systematic classification of cancers and more accurate predictions of the responses
of a cancer to treatment.

A major determinant of the biological potential of a cancer cell is likely to be
the normal cell from which it was derived. About 90% of human lymphoid malig-
nancies are derived from B cells, and each of these malignancies has been pro-
visionally assigned to a particular stage of B cell differentiation based on analysis
of immunoglobulin gene rearrangement and mutation together with cell surface
phenotyping. However, the extent to which the gene expression program of nor-
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mal B cells is retained in the cancer cell is best addressed by genomic-scale gene
expression analysis.

A particular breeding ground for human lymphomas is thought to be the ger-
minal center reaction. This notion is based on analysis of rearranged immuno-
globulin genes in these malignancies, which often show extensive somatic
hypermutation (55). Indeed, in two categories of non-Hodgkin’s lymphoma, fol-
licular lymphoma and MALT lymphoma, the immunoglobulin sequences from a
single biopsy specimen show evidence of ongoing mutation (56–59). In other
malignancies in which the immunoglobulin sequences are mutated but invariant,
the cell of origin could as well be a postgerminal center B cell. Even the presence
of immunoglobulin mutations in a B cell malignancy is not conclusive evidence
that the cell of origin passed through the germinal center microenvironment, since
in some mutant mouse models, somatic hypermutation of immunoglobulin genes
can occur in the absence of detectable germinal centers (60).

The most common form of non-Hodgkin’s lymphoma is diffuse large cell
lymphoma (DLCL), comprising ;40% of all cases. The immunoglobulin genes
in DLCL are invariably mutated. Furthermore, a recurrent translocation in this
malignancy involves the BCL-6 gene, a gene also required for normal germinal
center development (61–63). However, this translocation occurs in only ;32%
of DLCLs, thus revealing potential heterogeneity in this diagnostic category. Pat-
terns of gene expression in a large number of DLCLs were therefore analyzed,
using the Lymphochip microarray, to determine the relationship of this malig-
nancy to normal germinal center cells and to investigate the possibility that this
diagnostic category may harbor more than one disease entity. Figure 5 (see color
insert) shows the expression of a subset of 60 genes from the Lymphochip in 25
different lymph node biopsies of DLCL and in a variety of normal B cell prep-
arations. It is evident that the gene expression patterns in DLCLs are strikingly
heterogeneous and that a subset of DLCLs shows a pattern with a strong resem-
blance to the pattern seen in normal germinal center B cells. Distinct patterns of
gene expression identify at least two different subtypes in what has previously
been considered a single disease. The similarities in gene expression patterns
strongly imply that the cell of origin of one DLCL subtype is the germinal center
B cell, but the origin of the other cases is enigmatic. These cases could be derived
from a postgerminal center B cell that had extinguished the germinal center gene
expression program. Alternatively, the oncogenic transforming event(s) may have
disrupted signaling pathways that are critical to maintain the germinal center
phenotype.

Preliminary surveys of other B cell malignancies demonstrate that each diag-
nostic category has its own gene expression signature. Gene expression patterns
observed in follicular lymphomas share significant features with the patterns seen
in germinal center B cells, whereas the expression patterns in chronic lymphocytic
leukemia cells do not resemble those in germinal center cells but instead are
reminiscent of resting peripheral blood lymphocytes. Within each of these diag-
nostic categories, however, the molecular heterogeneity reflected in the gene
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expression profiles suggests the existence of disease subtypes, as were revealed
in DLCL. The stratification of patients according to gene expression signatures
could ultimately contribute to clinical decisions directing the patient to the most
appropriate therapy.

Gene Expression Changes During Immune Responses Oligonucleotide arrays
have been used to discover gene expression correlates of antigen-induced anergy
and activation in B lymphocytes (R Glynne, C Goodnow, personal communica-
tion). Transgenic animals expressing heavy and light chains for anti-HEL (hen
egg lysozyme) antibody provide B cells of near monoclonality that can be either
anergized or activated depending on the method and form of antigen administra-
tion (64). Anergic/tolerant B cells are profoundly resistant to subsequent exposure
to antigen under activation conditions. B cell anergy involves activation of some
but not all of the signaling pathways that are engaged during lymphocyte acti-
vation: NF-AT and erk MAP kinase pathways are activated in tolerant cells,
whereas NF-jB and jnk pathways are not (65).

Microarray analysis of gene expression in antigen-stimulated naı̈ve B cells
demonstrated that 59 genes were significantly induced or repressed after 1 h of
stimulation, whereas more than 300 genes were altered in expression after 6 h (R
Glynne, C Goodnow, personal communication). By contrast, only 8 of these genes
were regulated in tolerant B cells. Instead, tolerant B cells displayed a distinct
gene expression signature consisting of 20 upregulated genes and 8 downregu-
lated genes that were not altered during activation of naı̈ve B cells. Interestingly,
pharmacological inhibition of NF-AT by the immunosuppresive drug FK506 was
less efficient than tolerance in blocking B cell activation responses: One third of
the antigen-induced gene expression changes in naı̈ve B cells were unaffected by
FK506.

These findings could have important implications for the discovery of novel
immunosuppresive drugs. An ideal immunosuppressive drug would have all of
the functional effects of natural tolerance without eliciting the side effects that
limit the utility of FK506 and cyclosporin in some patients. The gene expression
signature of tolerant B cells could by used as a surrogate marker in drug screens
for compounds that might mimic the anergic state (R Glynne, C Goodnow, per-
sonal communication). Furthermore, if a novel compound in a drug screen induces
gene expression changes not found in tolerant cells, this might signal an unwanted
‘‘off-target’’ effect of that compound (42).

T cell responses to antigenic and mitogenic stimulation have also been ana-
lyzed by cDNA and oligonucleotide microarray analysis (37) (P Marrack, per-
sonal communication). Since T cell activation is a well-trodden path, many of the
induced genes are well known, including some depicted in Figure 2 (see color
insert). Interestingly, an equal number of genes were repressed as were induced
during T cell activation, leaving the total diversity of mRNAs roughly equivalent
between resting and activated cells. Immunologists have evidently spent less
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effort investigating the genes that are downregulated during lymphocyte activa-
tion because this class contained more novel genes than the upregulated class.

FUNCTIONAL GENOMICS AND THE GENETICS OF
COMPLEX IMMUNOLOGICAL DISEASES

Positional cloning of susceptibility genes for diseases with simple Mendelian
inheritance is now routine. However, the majority of medically important genetic
diseases show familial clustering with an indeterminant inheritance pattern. The
heritable risk for these diseases may be determined by many genes, each of which
can affect relative risk for the disease phenotype. In human autoimmune diseases,
a sibling of an affected individual has a relative risk of developing the same
autoimmune disease of 6–100-fold, compared with the prevalence of the disease
within the general population (66). The genetics of autoimmune mouse models
has been particularly illustrative of the complexity of some immune-mediated
diseases. For example, autoimmune diabetes in the NOD mouse may be controlled
by 15 genes on 11 chromosomes (66). The genetic complexity of these diseases
is most likely a reflection of their complex pathophysiology. In most autoimmune
diseases, the major histocompatibility complex (MHC) plays a dominant role,
presumably by dictating which autoantigens can be presented to the immune
system. Nevertheless, MHC alleles confer a relative disease risk of only 1.3–8.3-
fold (66). Other genetic loci may control the breaking of immunological tolerance,
the repertoire of autoimmune T and B cells, the expansion of pathogenic CD4,
CD8, and/or B lymphocyte subsets, and the skewing of immune responses by
cytokines. One approach to such complex diseases is to artificially simplify the
genetics. In the NOD mouse diabetes model, transgenic expression of a single
pathogenic T cell receptor has been used to short-circuit some of the disease
pathogenesis and to reduce the number of disease susceptibility loci to five
genomic intervals (67). Further breeding of this simplified mouse model to knock-
out animals has revealed a role for interferon gamma in the development of
diabetes (68).

Recent reviews have focused on the ways in which genome-wide application
of polymorphic markers can identify which genomic intervals may harbor the
disease susceptibility genes (66), and therefore we do not review this genomic
arena extensively here. A large number of genome-wide screens in immune-
mediated diseases of humans and animals have been conducted (67, 69–94). In
most cases, however, the genomic interval containing the susceptibility gene has
not been narrowed to , 1 centiMorgan (;1 2 106 base pairs) by these methods.
Interestingly, the susceptibility loci in these various diseases often coincide, sug-
gesting that some common genes may influence many autoimmune and inflam-
matory diseases (66, 95).
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The molecular definition of specific susceptibility alleles in complex immune-
mediated diseases will clearly require new strategies that complement genetic
linkage analysis. One functional genomics strategy that holds promise is the
‘‘positional candidate gene’’ approach (reviewed in 96). Having narrowed the
susceptibility interval by linkage analysis, the known genes that map within the
interval can be identified. Since mutation detection is still technically cumbersome
and a 1-centiMorgan susceptibility region could contain 30 or more genes, it may
be helpful to first focus attention on candidate genes with functions that can be
plausibly connected to the disease phenotype. One potential identifying charac-
teristic of a candidate susceptibility gene would be expression in the cells or
tissues presumed to be at fault in the disease. Soon, public databases of gene
expression measurements will make this analysis routine. Even when genetic
linkage has not been performed, the candidate gene approach may quickly reveal
potential disease susceptibility loci. For example, the candidate gene approach
was used to examine the genetic differences between chronic granulomatous dis-
ease (CGD) patients who differed in susceptibility to immune-mediated compli-
cations (97). CGD results from a primary defect in genes for NADPH oxidase
that control superoxide production in phagocytes. CGD patients differ dramati-
cally in the frequency with which they develop a variety of chronic complications,
including granulomatous diseases of the gastrointestinal and urinary systems as
well as autoimmune and rheumatological disorders. A priori, such differences
may be due to differences in the mutations present in the 4-NAPDH oxidase
subunit genes found in different patients. Alternatively, polymorphisms in other
disease-modifying genes could contribute to the risk of immune complications.
Foster et al examined polymorphisms in seven candidate genes encoding mye-
loperoxidase, mannose binding lectin, TNF alpha, IL-1 receptor antagonist, and
the Fc gamma receptors IIa, IIIa, and IIIb (97). Alleles of myeloperoxidase and
Fc gamma receptor IIIb were significantly associated with an enhanced risk for
gastrointestinal complications. Alleles of myeloperoxidase were associated with
increased risk of autoimmune and rheumatological disorders. Combinations of
specific alleles of different genes conferred an even greater relative risk for
chronic immune-mediated complications. In this relatively rare genetic disease it
would be difficult, if not impossible, to enroll enough patients to conduct a stan-
dard linkage analysis of immune complications; thus the candidate gene approach
provides a tractable alternative.

cDNA microarray analysis of gene expression promises to aid significantly in
the search for disease susceptibility loci. One example of this approach comes
from analysis of the spontaneously hypertensive SHR rat, which is a model for
human diabetes, hyperlipidemia, obesity, and hypertension (98). Genetic linkage
analysis of this disorder had focused attention on an interval from rat chromosome
4, but the causative gene had not been identified. cDNA microarrays were used
to compare gene expression in adipose tissue from the SHR strain and control,
nonhypertensive rat strains. SHR cDNA probes hybridized poorly to a microarray
spot representing CD36, a gene that maps to regions of mouse and human chro-
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mosomes that are syntenic to rat chromosome 4. This microarray finding
prompted a further analysis of the CD36 gene, which revealed multiple coding
region mutations in the CD36 gene of SHR rats. CD36 is a fatty acid receptor
and transporter whose overexpression in transgenic mice or deletion by gene
disruption in mice leads to alterations in blood lipid levels (98, 99); thus it is a
strong candidate gene for the hyperlipidemic quantitative trait in SHR rats. The
apparently diminished expression of CD36 in SHR rats, detected by cDNA
microarray hybridization, was traced to a genomic deletion in this strain within
the CD36 38 untranslated region, the only region of the CD36 gene represented
on the array.

Although this may appear to be an exceptional case, in that the genetic lesion
in this example directly affected the ability to measure the expression of the gene,
it is likely that many disease-causing mutations will be found to affect transcript
levels. Nonsense mutations and mutations that disrupt normal splicing can lead
to reduced mRNA levels via nonsense-mediated decay mechanisms. Many muta-
tions, including many classical genetic disease-causing mutations (e.g. many
thalassemias), directly alter transcription of the affected gene. Indeed, the
evolutionary constraints on mutation in perigenic noncoding regions, reflected in
limited sequence polymorphism observed in these regions as compared to degen-
erate positions in coding sequences, argue that the potential for deleterious con-
sequences from mutations in regulatory sequences of genes rivals that of
mutations in protein-coding sequences (4, 100).

Perhaps a more common use of cDNA microarrays in the investigation of
genetic diseases will be to detect quantitative differences in the expression of
genes between different animal strains or different human individuals. Quantita-
tive traits that distinguish individuals of the same species undoubtedly arise as a
result of both coding region polymorphisms that alter the function of a gene
product and regulatory region polymorphisms that affect the expression level of
the mRNA or protein. The relative contribution of these two types of allelic
differences to genetic diversity is unclear at present, but cDNA microarray anal-
ysis may soon reveal a broad range of quantitative gene expression traits within
the immune system. Polymorphisms in the mouse TNF alpha gene have been
described that affect TNF alpha levels and can modulate the development of
nephritis in animals predisposed to systemic lupus erythematosis (101). Similarly,
regulatory mutations in the human TNF alpha gene have been associated with a
wide variety of diseases, but the interpretations of such studies in humans is
complicated by the location of the TNF alpha gene in the MHC and the difficulty
in teasing apart the contributions of allelic differences in the TNF alpha gene and
the MHC genes.

An interesting quantitative gene expression trait was recently described involv-
ing FRIP, a gene that encodes an adapter protein involved in IL-4 signaling (102).
The FRIP gene was mapped to a region of mouse chromosome 14 very close to
the gene for the hairless mutation. The hairless mutation results from the insertion
of an endogenous mouse retrovirus into the mouse hairless locus (103). The hair-
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less gene is also mutated in human alopecia universalis and encodes a pioneer pro-
tein of unknown function (104). The hairless mouse also has immune abnormali-
ties, including lymphadenopathy and augmented response of anti-CD3 stimulated
T cells to IL-4 (102). The FRIP gene is expressed at significantly lower levels in
hairless mice compared with wild-type mice, possibly as a result of the same
retroviral insertion event. Given the proximity of FRIP to the hairless gene and
the IL-4-related abnormalities of hairless mice, the FRIP quantitative gene expres-
sion trait may well account for the lymphoproliferative disorder in these mice.

Genomic-scale gene expression analysis may help to unravel complex genetic
diseases by defining more precisely the disease ‘‘phenotype.’’ As a hypothetical
example, suppose one of the disease susceptibility genes involved in a complex
immunological disease regulates responsiveness of T lymphocytes to IL-2. cDNA
microarray analysis of IL-2-stimulated peripheral blood T cells might therefore
reveal a gene expression profile that correlates with the presence of this suscep-
tibility allele. This gene expression correlate of the susceptibility gene might be
observed in family members of affected individuals who are clinically ‘‘normal’’
due to segregation of other susceptibility alleles. Linkage analysis using poly-
morphic markers could be applied to this gene expression phenotype rather than
to the whole clinical syndrome, thereby isolating one component of the complex
disease phenotype.

GENE EXPRESSION PROFILES OF PERIPHERAL BLOOD
AS SENTINELS OF DISEASE

Immune cells circulate throughout the body responding to internal and external
threats to homeostasis. Circulating white blood cells are charged with the task of
seeking out, recognizing, and mounting a suitable response to the earliest signs
of an infection or injury. The sensitive and diverse repertoire of receptors and
signal transduction systems that cells use to monitor and respond to trouble at
any site in the body may well give rise to signature patterns of altered gene
expression in peripheral blood cells reflecting the nature and site of an infection
or injury. It is plausible that gene expression patterns in specific subsets of periph-
eral blood cells might be altered in characteristic ways in response to the presence
of specific occult infectious agents. As a consequence, peripheral blood mono-
nuclear cells might display a pathognomonic gene expression signature that could
be used to diagnose occult disease. Gene expression changes induced by cyto-
megalovirus (CMV) infection of fibroblasts and HTLV-I infection of T lympho-
cytes were studied using microarrays and revealed, not surprisingly, largely
distinct gene expression profiles (105, 106). Infection with CMV invoked a strong
interferon response that was not observed with HTLV-I, whereas HTLV-1 induced
a number of NF-jB target genes as a consequence of the nuclear translocation of
NF-jB induced by the HTLV-I tax protein. Recently, the response of monocytic
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cells to bacterial exposure in vitro was monitored using Lymphochip cDNA
microarrays (D Relman, in preparation). B. pertussis, H. pylori, and S. typhimu-
rium each induced a distinctive gene expression profile in the monocytes. Further,
mutant strains of B. pertussis that lacked individual toxin genes elicited gene
expression changes that differed from the response to the wild-type strain. Thus,
gene expression profiles could be used not only to recognize exposure to an
infectious agent but perhaps to identify the agent or category of agent, based on
specific characteristics of the response. This ability would clearly be especially
useful in cases in which the agent cannot be readily cultured from the host. Since
gene expression responses to infectious agents take place within the first few
hours after exposure, gene expression profiling might be useful in diagnosing
infectious exposure in advance of clinical symptoms, allowing exposed patients
to be rapidly triaged for treatment. Finally, the course of infection and the ensuing
host response could potentially be monitored by changes in peripheral blood gene
expression. This approach could aid in the management of sepsis, which is a
disease characterized by an orderly progression of pathophysiological events
(107). Gene expression profiles could thus be used to stratify patients into distinct
pathophysiological groups and, ultimately, treat each group with a therapy tailored
to the disease stage.

It is not difficult to imagine a wider range of clinical settings in which periph-
eral blood gene expression profiles might aid in patient management. Exposure
to toxic xenobiotic compounds such as dioxin should be readily detectable by
virtue of the expression of the aryl hydrocarbon receptor in activated T cells
(Figure 2, see color insert). T cells from cancer patients display an anergic phe-
notype, partly due to loss of the zeta chain of the T cell receptor (108, 109), which
should result in a gene expression signature in peripheral blood cells. In cases of
occult malignancy, such as often occurs in ovarian cancer, this gene expression
signature might be detectable in advance of clinical symptoms. In autoimmune
diseases such as multiple sclerosis, changes in peripheral blood gene expression
may precede a clinical exacerbation, allowing clinicians to time immunosuppres-
sive treatment optimally. Recognition of characteristic patterns of gene expression
in circulating peripheral blood cells may thus prove broadly useful as an approach
to noninvasive diagnostics, in effect recruiting these readily accessible cells as
‘‘spies’’ to report the presence of occult infection or injury they have encountered
during their surveillance of the integrity of the body. Of course, as with any
clinical test, gene expression profiling of blood mononuclear cells must be both
sensitive and specific to be useful. If only a small fraction of peripheral blood
cells responds to a pathological event, microarray analysis of gene expression
may not be a sufficiently sensitive test. Furthermore, we do not yet know the
extent of normal variation in gene expression patterns in peripheral blood cells,
nor the extent to which they are altered by everyday, non–life threatening events.
For example, it will be necessary (and very interesting in its own right) to catalog
the effects of upper respiratory viral infections, stress hormones, age, sex, and
even circadian rhythms on gene expression in peripheral blood cells. As already
mentioned, genetic variation in immune regulatory genes may be associated with
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quantitative gene expression traits that will need to be considered in interpreting
gene expression profiles of blood cells. Given the rich insights that genomic-scale
gene expression analysis has already provided, we can be optimistic that this
new mode of biological discovery will illuminate many issues in clinical
pathophysiology.
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Figure 1 A Schematic of cDNA microarray gene expression analysis. In this
illustration, the relative gene expression in a mature B cell and a plasma cell
is compared. Gene X represents a gene more highly expressed in the plasma
cell. See text for details. B Quantitative analysis of relative gene expression
using cDNA microarrays. For each spot on the microarray, the fluorescence
intensities of hybridized Cy3- and Cy5-labelled cDNA probes are separately
quantitated, as shown in the middle panel. The Cy5/Cy3 fluorescence intensi-
ty ratio is a measure of relative gene expression in the two starting mRNA
samples. The fluorescence ratios are divided into numerical bins and depicted
visually using the color scale shown at the right.
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Figure 2 Gene expression profiles identified using hierarchical clustering algorithms. DNA
microarray measurements of gene expression were taken from mitogenically activated T lym-
phocytes and serum-stimulated fibroblasts over a time course. Gene expression at each time
point was measured relative to gene expression in unstimulated cells. The relative gene expres-
sion data is depicted using the color scheme of Figure 1B with the brightest red and green
boxes representing eightfold induced or repressed genes, respectively. The left panel displays
the genes in random order, while the right panel displays the genes in the order determined by
hierarchical clustering.



STAUDT ■ BROWN C-3

Fi
gu

re
 le

ge
nd

 a
pp

ea
rs

 o
n 

th
e 

fo
llo

w
in

g 
pa

ge
.



C-4 STAUDT ■ BROWN

F
ig

ur
e 

3
(s

ee
 p

re
ce

di
ng

 p
ag

e)
 A

ge
ne

 e
xp

re
ss

io
n 

m
ap

 o
f 

S
a

cc
h

a
ro

m
yc

e
s 

ce
re

vi
si

a
e

. 
T

he
 l

ef
t 

pa
ne

l 
de

pi
ct

s 
th

e 
re

su
lts

 f
ro

m
 2

04
ge

no
m

e-
w

id
e 

m
ic

ro
ar

ra
y 

ge
ne

 e
xp

re
ss

io
n 

ex
pe

rim
en

ts
 in

 
S

a
cc

h
a

ro
m

yc
e

s 
ce

re
vi

si
a

e
. Y

ea
st

 w
er

e 
pl

ac
ed

 u
nd

er
 2

8 
di

st
in

ct
 p

hy
si

ol
og

i-
ca

l 
or

 n
ut

rit
io

na
l 

co
nd

iti
on

s 
(d

el
in

ea
te

d 
by

 t
he

 v
er

tic
al

 b
la

ck
 s

tr
ip

es
) 

an
d 

as
sa

ye
d 

m
ul

tip
ly

 o
ve

r 
tim

e.
 E

ac
h 

co
lu

m
n 

re
pr

es
en

ts
 o

ne
m

ic
ro

ar
ra

y 
ex

pe
rim

en
t, 

an
d 

ea
ch

 r
ow

 r
ep

re
se

nt
s 

on
e 

of
 t

he
 6

22
0 

kn
ow

n 
or

 p
re

di
ct

ed
 g

en
es

 o
f 

ye
as

t. 
T

he
 c

oo
rd

in
at

e 
re

gu
la

tio
n 

of
ge

ne
s 

en
co

di
ng

 r
ib

os
om

al
 s

ub
un

its
 is

 in
di

ca
te

d.
 G

en
es

 in
vo

lv
ed

 in
 m

ei
os

is
 a

nd
 r

es
pi

ra
tio

n 
fo

rm
 s

ep
ar

at
e 

cl
us

te
rs

 w
hi

ch
 a

re
 e

xp
a

nd
-

ed
 a

t 
th

e 
rig

ht
.



Figure 4 Gene expression signatures in lymphocyte differentiation.
Gene expression measurements were taken from four categories of lym-
phocyte differentiation/activation: resting peripheral blood B cells (both
naive and memory), in vitro activated peripheral blood B cells (anti-IgM
+/Ð CD40 ligand +/Ð IL-4), tonsillar germinal center and memory B
cells, and resting or activated (PMA + ionomycin) T cells. The genes
were chosen to highlight the difference between germinal center B cells
and in vitro activated peripheral blood B cells.
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Figure 5 Gene expression in normal and malignant B cells. Gene expression in diffuse large B
cell lymphoma (DLCL) lymph node biopsies was compared with gene expression in tonsillar ger-
minal center B cells, tonsillar memory B cells, resting peripheral blood B cells, and peripheral
blood B cells activated in vitro with anti-IgM + CD40 ligand + IL-4 for 6 and 24 h. A subset of
diffuse large B cell lymphomas resembles normal germinal center B cells.
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